Improved shatter resistance of canola by CRISPR/Cas9 and EMS mutagenesis

Janina Braatz
The natural seed dispersal mechanism of Brassica napus troubles farmers

- Dry siliques
- Fragile

- Weather
- Animals
- Machines

- Yield loss
- Volunteer plants
The dehiscence zone promotes seed shattering

Silique model

Silique cross-section

Underlying gene network (simplified)
CRISPR/Cas9 system can induce frameshift mutations at target locus

Model of CRISPR/Cas9-mediated gene knock-out

(Modified from Agrotis and Ketteler 2015)

BnALC

BnaA.ALC.a ACGCCGCTTGTGCAGCCGCTGAAACT

BnaC.ALC.a ACGCCGCTTGTGCAGTCGCTGAAACT

Cas9 target upstream of the bHLH domain

(Modified from Braatz et al. 2017)

© American Society of Plant Biologists
CRISPR/Cas9 construct was transformed into rapeseed hypocotyl explants

Transformation:

• Hypocotyl explants of spring cultivar ‘Haydn’

• Agrobacterium-mediated transformation

• 1 transgenic T₁ plant (transformation rate: 0.9%)

Regenerating plantlets
The T₁ plant contained four \textit{Bnalc} mutant alleles

<table>
<thead>
<tr>
<th>Allele</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>ACGCCG\textbf{CTT}--GTGCA\textcolor{red}{G}CCGCTGAAACT</td>
</tr>
<tr>
<td>(A_2), -2 bp</td>
<td>ACGCCG\textcolor{red}{C}---GTGCA\textbf{G}CCGCTGAAACT</td>
</tr>
<tr>
<td>(A_3), -7 bp</td>
<td>ACG\textcolor{red}{C}---\textbf{T}GCAGCCGCTGAAACT</td>
</tr>
<tr>
<td>(C_1)</td>
<td>ACGCCG\textbf{CTT}--GTGCA\textcolor{red}{G}CCGCTGAAACT</td>
</tr>
<tr>
<td>(C_2), +1 bp</td>
<td>ACGCCG\textbf{T}GTCAGCCGCTGAAACT</td>
</tr>
<tr>
<td>(C_3), -1 bp</td>
<td>ACGCCG\textbf{T}GTCAGCCGCTGAAACT</td>
</tr>
</tbody>
</table>

\textbf{BnaA.ALC.a}

\textbf{BnaC.ALC.a}

Sanger sequencing of cloned \textit{BnALC} PCR amplicons of the double heterozygous T₁ plant

(Braatz et al., 2017) © American Society of Plant Biologists
The T₂ progeny showed the expected Mendelian segregation

Inheritance of transgene and CRISPR/Cas9-induced BnALC mutations in 36 T₂ plants.
O = observed, E = expected number of plants

<table>
<thead>
<tr>
<th>Transgene genotypes</th>
<th>alc genotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A₂A₂ C₂C₂</td>
</tr>
<tr>
<td></td>
<td>A₂A₂ C₂C₃</td>
</tr>
<tr>
<td></td>
<td>A₂A₂ C₃C₃</td>
</tr>
<tr>
<td></td>
<td>A₂A₃ C₂C₂</td>
</tr>
<tr>
<td></td>
<td>A₂A₃ C₂C₃</td>
</tr>
<tr>
<td></td>
<td>A₂A₃ C₃C₃</td>
</tr>
<tr>
<td></td>
<td>A₃A₂ C₂C₂</td>
</tr>
<tr>
<td></td>
<td>A₃A₂ C₂C₃</td>
</tr>
<tr>
<td></td>
<td>A₃A₂ C₃C₃</td>
</tr>
<tr>
<td></td>
<td>A₃A₃ C₂C₂</td>
</tr>
<tr>
<td></td>
<td>A₃A₃ C₂C₃</td>
</tr>
<tr>
<td></td>
<td>A₃A₃ C₃C₃</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transgenetic</th>
<th>Non-transgenic</th>
<th>Chi² testb</th>
<th>O</th>
<th>Ea</th>
<th>2.25</th>
<th>4.25</th>
<th>2.25</th>
<th>4.25</th>
<th>2.25</th>
<th>4.25</th>
<th>2.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transgenic</td>
<td>Non-transgenic</td>
<td></td>
<td>3</td>
<td>27</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>3</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Chi² testc</td>
<td></td>
<td></td>
<td>2.25</td>
<td>9</td>
<td>4.25</td>
<td>4.25</td>
<td>2.25</td>
<td>4.25</td>
<td>2.25</td>
<td>4.25</td>
<td>2.25</td>
</tr>
</tbody>
</table>

a: under the assumption that the T₁ parent CP1 was non-chimeric (A₂A₃/C₂C₃)
b: 3:1 segregation, Chi²(0.999;2) = 13.82

PCR test for T-DNA presence

(Braatz et al., 2017)
No off-target effects were detected in two homologous regions

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Alignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BnaA.ALC.a</td>
<td><code>CCGCTTGTGCAGGCGCTGAAACT</code></td>
</tr>
<tr>
<td>BnaC.ALC.a</td>
<td><code>CCGCTTGTGCAGTCGCTGAAACT</code></td>
</tr>
<tr>
<td>BnaC04g13390D</td>
<td><code>CCGCTTGTGCAGTCCTGGAAACT</code></td>
</tr>
<tr>
<td>Non-coding region on chr. C02</td>
<td><code>CCGCTTTTTCGCAGCCGGCAAGAAA--</code></td>
</tr>
</tbody>
</table>

Alignment of the CRISPR-Cas9 target sequence with two potential off-target sites identified by a BLAST search

Sanger sequencing of the T₁ plant and five T₂ progeny showed only wild type sequences in the two potential off-target sites.
Whole genome shotgun sequence of T₁ plant was produced

- gDNA of T₁ plant
- (www.illumina.com)
 HiSeq 2500, 1 lane
 Paired-end sequencing
- 412 mio. raw data reads
- Quality trimming and mapping against transformation vector and Darmor-bzh reference
 (BWA mem, SAMtools, Novosort, R)
- Average 20x genome coverage
- Information about inserted sequences

(Sandra Driesslein, Nils Stein, Axel Himmelbach and Martin Mascher, IPK, Gatersleben, Germany)
The T₁ plant carried vector backbone insertions

Transgenic T₁

Position in vector sequence (kb)

Read depth

Mapping of genome sequences against the transformation vector sequence

Average genome coverage, half & double of the coverage

© American Society of Plant Biologists
The general plant growth of T_1 and T_2 resembled the wild type

T_1
T_2
Haydn

alc mutants

(Modified from Braatz et al., 2017)
Bench-top phenotyping of single siliques assesses shatter resistance

- Measure: Peak tensile force separating valves and replum

Tensile force measurement
Cas9-induced *Bnalc* shatter resistance was masked by transformed genotype

Conditions:
Greenhouse, 16 h light, 22 °C, *Bnalc* mutations in ‘Haydn’ background, 30 siliques/5 plants/genotype

Statistics:
Regression at SL 5.5 cm, standard error, ANCOVA, same letters no significant difference ($p \geq 0.05$)
‘Haydn’ shows high shatter resistance

Conditions: Greenhouse, 16 h light, 22 °C, 30 siliques/ 5 plants/ genotype
Statistics: Regression at SL 5.5 cm, standard error, ANCOVA, same letters no significant difference (p ≥ 0.05) (Braatz et al., under review)

Tensile force measurements

Winter varieties

- 'Express'
- 'Apex'
- 'Artoga'
- 'Avatar'

Spring varieties

- 'Express'
- 'Drakkar'
- 'Haydn'
- 'Mozart'
- 'Westar'

(Braatz et al., under review)
EMS mutants confirmed the Cas9-induced Bnalc shatter resistance

Tensile force measurements

- **Conditions:** Greenhouse, 16 h light, 22 °C, Bnalc mutations in ‘Express’ background, 30 siliques/5 plants/genotype
- **Statistics:** Regression at SL 5.5 cm, standard error, ANCOVA, same letters no significant difference \((p \geq 0.05)\)

(Braatz et al., under review)
Preliminary field data support \textit{Bnind} shatter resistance

Overview of field trial in full bloom

Seed collection tray

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fieldTrialOverview}
\caption{Overview of field trial in full bloom.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{seedCollectionTray}
\caption{Seed collection tray.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{harvestData}
\caption{Average harvest per plot (kg).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{lossData}
\caption{Pre-harvest loss (%).}
\end{figure}

\textbf{Conditions:} 2016/17, Rheinbach (Bonn), randomized block design, three repetitions, 3 x 3 m plots, 11 cm row distance, 55 seeds/m², backcrossed F\textsubscript{3} \textit{Bnind} mutations in ‘Express’ background, two 1 x 0.1 m seed collection trays per plot (28.06.17), seed loss until 31.07.17, harvest 02.08.17, direct cutting of 4.86 m² central plot.

\textbf{Statistics:} n = 3 (harvest), n = 6 (loss), bars show std. dev./ median, t-tests, same letters no significant difference (p \geq 0.05)
Four *BnNST1* homoeologs were targeted by CRISPR/Cas9 in resynthesized rapeseed RS306

![Diagram showing CRISPR/Cas9 target site and exon/intron structure]

- Indel mutations in all four gene copies of primary transformant
- Multiple alleles per gene → chimeric mosaic T₁ plant
- Inheritance to T₂ currently under investigation
- Phenotyping pending

(Braatz, unpublished)
This study provided

- Insights into the efficiency of CRISPR/Cas9-mediated mutagenesis of polyploid rapeseed
- Novel mutations for breeding shatter resistant rapeseed
- Information on the effect of \textit{Bnalc} and \textit{Bnind} mutations on shatter resistance
Future efforts will involve

- Phenotypic assessment of *Bnnst1* mutants
- Marker-assisted backcross of mutant alleles into elite material
- Establishment of DNA-free transformation protocol to produce non-GMO mutants for the European market
I would like to acknowledge

Prof. Dr. Christian Jung, Dr. Hans-Joachim Harloff, and all colleagues of the

Plant Breeding Institute, University of Kiel

Zoological Institute, Functional Morphology and Biomechanics, University of Kiel
Prof. Dr. Stanislav Gorb
Dr. Lars Heepe
Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben
Dr. Martin Mascher
Dr. Nils Stein
Dr. Axel Himmelbach
Variation statistics, University of Kiel
Dr. Mario Hasler
IKMB, University of Kiel
Sanger sequencing lab
Formerly Saaten-Union BioTec, Leopoldshöhe
Dr. José Orsini

Institute of Crop Science and Resource Conservation, INRES, University of Bonn
Prof. Dr. Jens Léon
Winfried Bungert
Karin Woitol
Karlsruhe Institute of Technology, Karlsruhe
Prof. Dr. Holger Puchta
NPZ Innovation, Hohenlieth
Dr. Gunhild Leckband
Dr. Amine Abbadi
Dr. Steffen Rietz
Funding
Stiftung Schleswig-Holsteinische Landschaft

And you for your attention!